AXIOMS FOR HOMOLOGY

Eilenberg, Steenrod, and Milnon Obtained or system of axioms, which characterize homology theories without bothering with simplicen & singular chains.

DEFINITION

A HOMOLOGY THEORY is a map that assigns the following: (I) \forall pair of spaces (X, A) a gradue abelian group $H_p(X, A)$, PEZ. $(\mathbb{I}) \forall (X,A), (Y,B) \text{ and } f: (X,A) \rightarrow (Y,B)$ a homomorphism $f_{x}: H_{p}(x, A) \rightarrow H_{p}(Y, B)$ YpeZ. (III) \forall pair of spaces (X, A), a homomorphism $\partial_{x}: H_{p}(x, A) \rightarrow H_{p-1}(A), \forall p \in \mathbb{Z}$. Notation: $H_{p}(x, \phi)$ is denoted by $H_{p}(x)$.

turthermore : The assignments in (I)e(I) are assumed to be functorial, ie. F(X,A), (Y,B), (Z,C) and for all maps $(X A) \xrightarrow{f} (Y B), (Y B) \xrightarrow{f} (Z C)$ we have $(g_{\circ}f)_{\star} = g_{\star} \circ f_{\star}$, and for id: $(X,A) \rightarrow (X,A)$ we have (idx)=idHp(x,A) Xp-The homomorphisms $\partial_{x} : Hp(x, A) \to Hp-1(A)$ are assumed to be natural, ie $\forall map f: (x, A) \rightarrow (\forall, B)$ the following diagram commutes $H_{p}(X,A) \xrightarrow{O_{*}} H_{p-1}(A)$

All the above is assumed to satisfy the tollowing axioms: (1) HOMOTOPY INVARIANCE If $f \simeq g$ as maps $(X, A) \rightarrow (\Upsilon, B)$ then $f_{\chi} = g_{\chi} : H_p(\chi, A) \rightarrow H_p(\Upsilon, B).$ (2) EXACTNESS AXIOM \forall pain (X,A) consider $i: A \rightarrow X$ (the inclusion) and $j:(x,\phi) \rightarrow (x,A)$ (coming from $id: x \rightarrow x$) then the septience $-\frac{\partial }{\partial }H_{p}(A) \xrightarrow{i_{*}} H_{p}(X) \xrightarrow{i_{*}} H_{p}(XA) \xrightarrow{j_{*}} H_{p-1}(A) \xrightarrow{i_{*}} .$ is exact. (3) EXCISION THEOREM Let (X,A) be a pain, UCX open subset with UCA. Let

$k: (X \setminus U, A \setminus U) \hookrightarrow (X A)$
be the inclusion. then
K_{\star} : $H_{\mu}(X \setminus U, A \setminus U) \rightarrow H_{\mu}(X, A)$ is
an isomorphism for all p.
(F) DIMENSION AXIOM
Hi(point)=0 Vi=0.
5 ADDITIVITY disjoint union
Let $X = \coprod X_{x}$, and $i_{x}: X_{d} \to X$ $x \in I$
the inclusions =>
$ \bigoplus_{x \in \mathbb{I}} (i_x)_* : \bigoplus_{y \in \mathbb{I}} H_p(x_x) \cong_{y \in \mathbb{I}} H_p(x) $
is an isomorphism typ.
DEFINITION
Let H be homology theory. ther

 $G:=H_0(point)$ is called the coefficient group of the theory. (in our examples, we had G=Z).